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!2.2), (3.3) and (5.1) show that the functional El is also positive-definite for all possible 
Lagrangian displacement fields t(x) and velocity fields u(x). 

Consequently, the estimate 

.!?~t+~ (t) Q En++e exp 12 (A' + 8) tl 

follows from (3.4) when h = A+ + E (e> 0) which, by using the inequality II,+(t)>O, is 
transformed to the more obvious form 

3&++,(t) + E (2A+ + c)M(t) + &G-S 2En++e exp [2 (A' i E) tl (5.2) 

It is seen from (5.2) that the parameter A+ + E gives an upper estimate of the in- 
crements in the solutions of problem (2.1). A comparison of estimates (4.11) and (5.2), 
taking account of (4.12), shows that the parameter A+ gives both an upper and lower estimate 
of the rate of growth in the most critical perturbations (4.8): 

A+ - 6 <W* < A+ + E 

The author thanks V.A. Vladimirov for suggesting the problem and for useful discussions. 
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THE CONSTRUCTION OF RECIPROCITY AND INTEGRAL REPRESENTATION FORMULAS 

OF THE GENERAL SOLUTION FOR QUASISTATIC AND DYNAMIC PROBLEMS 

OF UNCOUPLED GENERALIZED THERMOELASTICITY' 

YU.M. MAMEDOV 

Reciprocity formulas are constructed and representations of the 
Somigliani-type are obtained for quasistatic and dynamic problems of 
uncoupled generalized thermoelasticity in the Lord-Shulman formulation 
that is effective for applications. Moreover, representations are 
obtained for the stresses and heat flux. Unlike the existing approach 
(/l/, say) these formulas are derived on the basis of an examination of 
the system of differential equations of the above-mentioned problems of 
generalized thennoelasticity as a system with appropriate 
non-selfadjoint differential operators. Operators adjoint to the initial 
differential operators are introduced into consideration for the 
construction of the reciprocity formulas (second Green's formula), and a 
Laplace transformation is used. 
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1. FomZatim of the probtem. The system of equations for dynamic problems uncoupled 
generalized thermoelasticity UJGT) has the form 

Here ui and Xi are the components of the displacement vector and mass farce vector, G is 
the volume density of beat sources, T is the deviation of the actual absolute temperature 
from the absolute temperature Q, of the undeformed state, C:jxl, htj, pij, C, and mechanical 
and thermophysical chasacteristics of the body, 'c~ is a relaxation constant and p is the 
density of the medium. 

The first equation of Cl.11 is obtained from the equations of motion (Oij, j + Xi -z PUI”) 
as a result of substituting the Duhamel-Neumann expression for the stresses 

*jj --.- ‘lzCt,,;i (ufi, [ + IAl,]<) - piiT (1.2) 

where $Q = GiJ?Zj. 
W consider the system of Eqs.tl.1) in the whole space R” as well as in the domain'VC 11". 

It is assumed that the domain possesses a piecewise-smooth boundary S. The points of space 
are denoted by x = fr,, s,, &I and y = (yl, yz, y3) while n = (n,, net n,) is the unit normal. to 
the boundary S (exterior with respect to the body VI. It is considered that the tensors cijh.l, 

h hi are symmetric. 
Let the boundary of the domain V be separated into four parts 

s = S' u s' ;J S3 3 SJ, s" n s: = by (i*j = 1,2,3,4; i # j) 

whexe displacements and temperatures are given on S", surface forces and heat flux on S', dis- 
placements and heat flux on S3, and surface forces and temperatures on S-L : 

u==f,T=g on S'; p == h, Q = d on SE' (1.3) 

u -;: f. Q = d on Sk3; p ::= h, 1" = g on sn* 

Moreover 

where 

11 (x, 0) -= d(s), u’ (8, 0) = ll1 (x) (1.4) 
T (x,0) L--L T"(x), T'{x,Of :.-= T'(x), s E v 

p := T,u - pnT, Q ~7 dT,‘h+ 

Here T, is the stress operator, Sa", SF? and Sn" is the set of all points on S", S", 9, 
respectively, at which the normal is defined, and g, d, f = (f,,_&,f,) and b = jk.,,h,,h,) are 
scalar and vector functions given on the boundary. 

It is assumed that the functions u, p, T and Q on the surface S are sufficiently smooth 
so that integrals of the potential type, in which these functions are taken as densities exist. 

The initial-boundary value problems fox this formulation are as follows. Find the 
thermoelastic state (u.8, T) of a medium in a time interval Ito, &I, corresponding to a mass 
foxce X, a thermal source G, and the initial conditions (1.4) (the first two conditions in 
(1.4) are missing in the case of quasistatic problems) and according to the appropriate 
boundary conditions (1.3) for 5"'= S, where m is the number of the problem. 

We will say that a mixed initial-boundary value problem of uncoupled thermoelastic 
dynamics {or quasistatics) holds if at least two of the four parts of the boundary S are con- 
sidered, 

2. &x?Q?racity fomks. To construer. the reciprocity formulas we write the system of 
equations adjoint to (1.1) (IL&T - (Cij,lU;t, 0, j 5 Xi’ (2.1) 

cez*T”‘-+ c,Y - (h,$: j). fi - */&itj (Ec;I, j 4. a;, a) = G 

For the adjoint system 

Cij’ Ts ‘i&?fjrr (Ui, 8 + I&,*), _Bg’ = O$j’?Lj (2 2) 

Applying a Laplace transformation to (L.2) and the first equation in (2.21, carrying out 
all the necessary calculations, using Green's formula and the equilibrium equation, we obtain 
the first part of the reciprocity formula (everywhere henceforth the volume integrals are 



817 

evaluated over the volume V and the surface integrals over the surface S) 

We obtain the second part of the reciprocity formula from the heat conduction equations 

S(~B'-_'Q)dS-_((GT'-_G'T)dV-Sc,T"T'dV- (2.4) 

~t,c,p*T’T”dV - 1 2,c,T1T’ dV = - 1 &C&F dV 

Eliminating the integral on the right-hand side from (2.3) and (2.4), applying an inverse 
Laplace transformation to the equality obtained, we find the reciprocity formula for dynamic 
UGT problems 

i$[t&i(r,t- " 'C) X, (Xv .t) - Xi (X9 T) Ui’ (X2 t - z)] dV/, do i_ (2.5) 
0 

[G’ (x, t -5) T (x, t) - G (x, t) T’ (x, t - $1 dV, dt - 

a S~[ui”(x,t)up(x)I_~i((x,t)uil(x)]dV,= 

~f~T’(x,t-t)Q(x,r)-Qf~x,t-~)T(x,3~dSldt+ 

~:,c,(~)T~(x)T’(x,t)dV.LSt~~r(x)T~(~)T”(x,t)dV~+ 

$c~(x)T~(X)T’(x,i)dlix+~Slui’(x,t-r)Pi(X,Tj- 
0 

pi’ (x, t - T) ui (x, T)] dS, dt 

In the case of quasistatic UGT problems (here pnr"azz 0) in the first equation in (l.l)), 
the reciprocity formula has the following form (it is constructed in exactly the same way as 
for the preceding case) 

* ~I~i(X4&‘@.) - Xi k 1) ui’ (x)] dvx + P-6) 

SS[C’(x,t--)T(x,r)-G(x,z)T’(x,t--)]dV,dt= 
0 

ic. (x) Z’“(X) 2”’ (x, t) dliw -+ ST~C, (x) 7” (x) T’ (~3 tl dv, + 

frrce (x) T”(x) T” (x, t) dV, -!- f [ui’ (x) PC (x, 4 - P; (4 1(-i (x7 t)l d& 

We note that for Z* == 0 formulas (2.5) and (2.6) agree with the reciprocity formulas 
of the quasistatic and dynamic problems of classical uncoupled thermoelasticity /5/*. (*See 
also: Mamedov. Yu.M. Application of the potential method in thermoelasticity problems. Pre- 
print No.236, Inst. Fiz., Akad. Nauk Azerb.SSR, Baku, 1987). 

3. Integru~ representations of the general soktion. To construct formulas of the 
Somigliani-type the reciprocity Eqs.(2.5) and (2.6) are used. 

We replace t and y in (2.5) and set therein 

X,' = &,,6 (y - x)6 (t - r), G' = 0 
Ui' = ui, (y, x, t-z), pi' = Tj, (y,x, t -r) 
T' = K, (y, x, t -t), Q’ = N, (y, x, t - z) 

We then obtain the following integral formula for the dynamic UGT problems (in the 
displacements) 

(3.1) 
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s {P (Y) [“L (YY x3 t, %“(Y) + uim (Y! x, t, utl (Y)] + 
cr (Y) [Km (Y, x, t) T'(Y) t 9’ (Y) K,, (Y> x, 0 + ~6”” (Y) K,’ (~3 ~9 t)]} dv, + 

y, x, t - T) Q (y, T) - A!“, (y, x, f - T) T (y, T)] dS, dr m’ 

SS[“im(Y,x.f-TT)Pi(Y~t)-Tiin(Y , x, t -- T) ui (y, T)] dS, dt 
0 

Nm (Y, x, t) = aK,n (Y, x, t)lJn+ (Y), x E V, t > 0 

In the case when 

X,’ = 0, G' = 6 (y - x) 6 (t -- T) 

ui’ = pi’ = 0, T’ = T* (y, x, t - 7); Q’ = Q* (y, x. t - T) 

we obtain Somigliani-type formulas for the temperature from the reciprocity Eq.(2.5) 

Thy)= ~\T*(Y 
oQ 

,x,t--)G(y,T)dV,dt$ (AZ!, , 

s c~ (Y) T* (~9 x> 4 T"(Y) dv, + S~tcc (y) T’ (y) T* (y, x, t) dV, I 

S ~t~e (Y) T”(Y) T’* (9, x, t) dv, + SS[T* (y 1 x, t - 4 Q (Y, 7) - 

Q* (y, x, t -d T (y, T)] d&. XEV, t>o 
Q* (y, x, t - T) = dT* (y, x, t - z)ian+ (y) 

Furthermore we replace x and y in (2.6) and set therein 

Xi' = 6,,6 (y - x), G' = 0, Ui' = ui, (y, x) 

pi' = Tim (y, x), T’ = K,* (y, x, t - z), Q = A-,* (y, x, t - x) 

We here obtain an integral formula to represent the displacements for quasistatic UGT 
problems 

um(X, t) = Sui~~(y~~)Xi(Y, t)dVr -C SSK~*(Y.X, t-r)G(y,r)dV,dr + 

S cz (Y) (T”(Y) Km* (~9 ~7 t) + it [T1 (Y) Km* (Y> x, t) + 

T”(Y) K: (y> x, t)]) dv, + islK.,* (y, x> t - ~c) Q (~3 z) - 
0 

Nm* (YP ~7 t - T) T (Yv x)1 dSy dr + ‘j [Uitn (Yt 2) PI (Y, t) - 

Tim (~3 x) us (Y, t)] d&> x E V, t > 0 
Iv,* (y, x, t) = 8K,* (y, x, t)ian+ (y) 

Formula (3.2) remains true even in the case of quasistatic problems. 
The displacements and temperature within the body (i.e., for x E v) in terms of their 

boundary values and the boundary values of the stresses and heat flux are calculated by using 
the formulas obtained. 

We note that since the first three equations in system (2.1) form a system of Lame 
equations of motion (the system of equations of elastostatics in displacements in the case of 
quasistatics) for the isothermal case, the components ui,,, (x, y, t), (vi,,, (x, y)) of the fundamental 
solution of the adjoint system are also components of the fundamental solution of non-station- 
ary isothermal elastodynamics (elastostatics). 

Moreover, the components Ti,,, (x, y, 1) (Ti, (x, y)) are identical with components of the 
same kind of isothermal elastodynamics (elastostatics). 

We will now set up a relation between the components ,K,, T* (Km*, T*) of the fundamental 
solution of system (2.1) (in the quasistatics case pui" z 0) and the fundamental solution of 
the initial system corresponding to a unit pulse heat source). 

Assuming the body to be without limit and considering the initial conditions and mass 
forces to be zero and G(y,r) = S(y - x)6(~) we obtain from (3.1) and (3.3) 

T,* (x, Y, t) = T* (Y, x, t), U,* (x, Y, t) = K, (Y, x, t) (3.4) 

U,” (x, y, t) = Km* (Y, x, t) 
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Here Tr* (x, y, t), u,* (x, y, t) and u,,,V (x, y, t) are components of the fundamental solutions 
of the initial systems, respectively. 

4. Representation formutas for the stresses and heat fhx. Replacing the notation of 
the subscrint bv 1 in (3.1). actinq on both sides of this equality with the operator C,,dlh 
and taking acco;nt Of (1.2); -' we obtain a representation formula for the stresses 

Omr (X, t) = 5 SDmri (X7 y, t - T, xi (YT T, dV, dz i- 
CJ 

jS V:, (x, y, t -z) G (Y, T) dv, do + 5 {P (Y) rk, (x’ Y7 t) u:(Y) f 

I.&* (x,y, t)Ui’(Y)l+ G(Y) [T”(Y) en7 (xvY* t) T e(Y) enr(x, YT t) + 

z,~“(y)v,,(x,y,t)])d~‘, -i 5s[V~,~(x,r,t--r)Q(~,r)- 
II 

t 

(4.1) 

where 

Tli (x~ YV t) = Cijkmnj (Y) aumL (YT xv t)/a!4k 

Acting on both sides of the equality (3.2) with the operator d/an+(x) we obtain 
representation formula for the heat flux 

in 

Q(x,t) = is ~T,*(x,y.t-~)G(y,-r)dV,d-c+ 

s ce (Y) + ,“ajx) T,*(x. ;. t) T”(Y) dv,+ 1 vc (Y) &j T,*(x? Y, t) Tl(Y) dV, + 

s we (Y) & T1’* (x, y, t)T” (y) 0, -1 
iS[ 

&+*(~‘YJ-$Q(YJ)- 

~Q1*(x.~,t-~)T(~,-r);dSydz. SEV. t>o 

Q1* (x, y, t - T) = X”,* (x. y, t - T)/c%z+ (x) 

(4.2) 

In the case of quasistatic problems the formula for the stresses has the form 

(43 

s G(Y) G(X, y, t) T"(Y)db', +&(Y)Y:&,Y!t) T'(Y)dV, + 

S~,c,(y)~~';:r(~,y, t) T"(y)dV, + ~s[V:,(x,y, t-,T.) Q (Y,+- 
0 

S:, (~3 y, t - r) T (Y, a)] dS, dr + 1 tD,nri (~7 Y) PI (Y, t) - 

s,,i(X,Y)ui(Ylt)ldSr--(x,t)Plnrr XEV, t>o 

Dnwi (Xv Y) = Cmrlk (X) ault (XT Y)iaxk 

Smri (Xv Y) = Cmrlk b) aTli (% Y)/d% 

v*,r (x, y, t) = Crnrlk (x) au,” (x, y, t)laxk 

& (X, Y, t) = Cmrlk (X) aN,” (X, Y, t)h% 

where 

1 TL, (X, y) = CijkmnJ (Y) au,1 (Yv X)/‘Yti 

The stresses and heat flux at interior points of the domain under consideration can be 
calculated for appropriate boundary-value problems by using the representations (4.1)-(4.3). 

Boundary-time integral equations for the above-mentioned initial-boundary value problems 
can be constructed in a direct formulation on the basis of the integral representations given 
above (when there are fundamental and singular solutions). Moreover, the approach elucidated 
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can be extended to two-dimensional initial-boundary value UGT problems on replacing the 
fundamental solutions. 

The author is grateful to R.V. Gol'dshtein for his interest. 
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A PROBLEM IN ELASTICITY THEORY* 

V.A. YURKO 

The problem of determining the dimensions of the transverse 
cross-sections of a beam from the given frequencies of its natural 
vibrations is examined. Frequency spectra are indicated that determine 
the dimenions of the transverse cross-sections of the beam uniquely, an 
effective procedure is presented for solving the inverse problem, and a 
uniqueness theorem is proved. The method of standard models /l/ is used 
to solve the inverse problem. 

We examine the differential equation describing beam vibrations in the form 

(h@ (z) y")" = hh (X) g, 0 *:; J < T (1) 

here h(x) is a function characterizing the beam transverse section, and p = 1,2,3 is a 
fixed number. We will assume that the function h(x) is absolutely continuous in the segment 
[q, 7’1 and h (z)> 0, h (0) = 1. The inverse problem for 111 in the case p=2 (similar 
transverse sections) was investigated I2f in determining small changes in the beam transverse. 
sections for given small changes in a finite number of its natural vibration frequencies. 

Let {h%jhal,i-1,2 be the eigenvalues of boundary-value problems Qj for (I) with the 
boundary conditions 

y(0) = $1 (0) z y (T) = y' (T) = 0 

The inverse problem is formulated as follows. 

Problem 1. Find the function h(z), x~ [O, TI for given frequency spectra {htijlZ+l.j=l,a * 
To solve this inverse problem we will first prove several auxiliary assertions. 
We consider the function @ (2, V the solution of (1) under the conditions @ (0, a) : 

@ (T,h) = @'(T, k) = 0, w (0, #I) = 1. We set a(h) = CD* (0, h). Furthermore, let the functions 
CV (5, a) (v = 0, 1, 2, 3) be solutions of (1) under the initial conditions I$' (0, h) = 6,. 

Y, p -= 0, 1, 2, 3. We will use the notation Aj (h) = C,-j (2'9 ?+) Ca' (2'9 h) - C, (Z', h) Ci-j (T, h), j z 
1, 2 


